

Deltek Acumen 6.0
Metric Developer’s Guide

December 8, 2014

Metric Developer’s Guide ii

While Deltek has attempted to verify that the information in this document is accurate and
complete, some typographical or technical errors may exist. The recipient of this document is
solely responsible for all decisions relating to or use of the information provided herein.

The information contained in this publication is effective as of the publication date below and is
subject to change without notice.

This publication contains proprietary information that is protected by copyright. All rights are
reserved. No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, or translated into another language, without the prior written
consent of Deltek, Inc.

This edition published December 2014.

© 2014 Deltek, Inc.

Deltek’s software is also protected by copyright law and constitutes valuable confidential and
proprietary information of Deltek, Inc. and its licensors. The Deltek software, and all related
documentation, is provided for use only in accordance with the terms of the license agreement.
Unauthorized reproduction or distribution of the program or any portion thereof could result in
severe civil or criminal penalties.

All trademarks are the property of their respective owners.

Metric Developer’s Guide iii

Contents
Introduction .. 1

What Is a Metric? .. 1

To What Do Metrics Apply? .. 1

Types of Acumen Fields .. 3

Metric Formulas ... 4

Metric Formula Development .. 6

Acumen Metric Editor .. 6

Writing Formulas ... 7

Single Function Formulas ... 7

Compound Formulas – AND Conditions ... 9

Compound Formulas – OR Conditions ... 11

Compound Formulas – Using AND and OR Together .. 12

Other Math Functions .. 12

Writing the Primary Metric Formula ... 13

Writing the Secondary Metric Formula .. 14

Advanced Percentage Examples .. 14

Ratio Example ... 15

Writing the Tripwire Metric Formula ... 17

Cost Example .. 18

Schedule Example .. 18

Weighting .. 18

Defining Thresholds ... 19

Define Tripwire Threshold Scales ... 19

Normal and Gradient Scales ... 19

Tripwire Thresholds ... 20

Including/Excluding Metrics from Analysis .. 20

Shortcuts and Rules .. 21

Counting Shorthand with One Criterion .. 21

Counting Shorthand with Multiple Criteria ... 21

AND Shorthand with Multiple Criteria (Tripwire formulas) .. 21

Definitions .. 22

Commonly Used Syntax .. 23

IF(logical_test, value_if_true, [value_if_false]) .. 23

SUM(number1, [number2], [number3], [number4], ...) .. 23

AND(logical1, [logical2], ...) ... 23

Metric Developer’s Guide iv

MAX(number1,number2,...) ... 23

AVERAGE(number1, [number2],...) .. 24

COUNTIF(range, criteria) .. 24

Introduction

Metric Developer’s Guide 1

Introduction
This guide is a reference for Deltek Acumen Software users looking to develop and customize
advanced metrics within Acumen.

What Is a Metric?
A metric is a standard or measure for use in determining how well a project is planned and
executed.

Metrics contain formulas, weightings and tripwires (thresholds). Formulas are used to calculate
results as part of an analysis. Tripwire thresholds are used to flag and filter activities that exceed
given levels.

Metric results can be numeric (for example, cost or duration) or percentages (for example,
percentage of total project duration). Percentages are useful for portraying results within a given
context. Acumen uses metric libraries to group metrics for project analysis. Standard metric
libraries pertaining to schedule quality, cost, project performance, risk exposure, Earned Value,
the DCMA 14 Point Assessment, and more are included within the tool. For example, metrics can
be organized by categories, project attributes, or along a project lifecycle. Organizing the metrics
differently allows you to customize your project or program analysis.

It is important to understand how the metrics are constructed, calculated, and applied.

To What Do Metrics Apply?
All project data is stored in a tabular manner with each activity represented as a row of data. For
that activity, each activity attribute is listed in a different column.

The data is then aggregated either across the spreadsheet or down the spreadsheet. Or, as
viewed in Acumen, the analysis can be conducted for Ribbons, Phases, or Intersection points.

Acumen metrics are:

 Calculated across a Ribbon (green box).

 Calculated down a Phase (blue box).

 Calculated for the intersection of a phase/ribbon (red box).

Introduction

Metric Developer’s Guide 2

The screenshot below shows an example view of Ribbon and Phase Analysis in Deltek Acumen.

A summary table of the analyses is shown below. Additional details are included after the table.

Analysis Type Summary

Ribbon Analysis Analyzing and comparing groups of activities (i.e. activities grouped by
WBS, contractor, or CAM).

Phase Analysis Analyzing project time phases or identifying trends.

Intersection
Analysis

Analyzing a group of activities in a certain time-phase. (i.e. pinpointing
project hot spots).

Grouping by Ribbons
Ribbons are groupings of activities based on a given criteria. By default, ribbons are grouped by
project but can be grouped in multiple ways including activity attribute and path. If a workbook
contains multiple projects, then a separate ribbon for each of these projects will be shown.
Ribbons also contain activities. These activities can be hidden from within a ribbon if desired.
Critical activities are shaded in red; non-critical in blue. Normal activities sit beneath summaries
and milestones within a ribbon. Ribbons are segmented by phases.

Grouping by Phases
Phases are user definable ‘segments’ of time against which the Acumen analysis is run. Phases
can be days, weeks, months, quarters, years, custom periods or the entire project duration.

Grouping by Intersections
Intersections are where a ribbon and a phase intersect.

Along with understanding the grouping of the data, it is also important to understand the variety of
fields that are referenced within Acumen.

Introduction

Metric Developer’s Guide 3

Types of Acumen Fields
When creating metric formulas, there are four types of fields that can be referenced:

 Activity Fields

 Project Fields

 Workbook Fields

 Dynamic Fields

Metric formulas are generally written within the context of an activity. However, if you reference
fields outside of the activity context (for example, project and/or workbook), you are able to model
how activities relate to, and potentially impact, other contexts.

Activity Fields
Activity fields are the most commonly used type of field in an Acumen metric formula. All fields
that are defined in the field mapping during a project import are exposed as activity fields in the
metric editor. These include user defined and code fields.

Project Fields
Some project level fields get automatically imported during a project import. These fields are
automatically exposed and can be used within metric formulas. When a metric is calculated that
contains a project field reference, the specific project field value for the activity in question is
used. A single metric calculation may contain activities from multiple projects. In this instance, the
appropriate project level field value will be used for each activity (for example, “time now” may be
different for each of the projects).

Project fields include:

 Project Start [ProjectStart]

 Project Finish[ProjectFinish]

 Project Time Now [ProjectTimeNow]

Workbook Fields
Workbook fields are summated values that are calculated at the workbook level (that take into
account all activities within the workbook).

Workbook fields include:

 Workbook Cost (total) [WorkbookCost]

 Workbook Actual Cost [WorkbookActualCost]

 Workbook Remaining Cost [WorkbookRemainingCost]

 Workbook Budget Cost [WorkbookBudgetCost]

 Workbook Budget Duration [WorkbookBudgetDuration]

 Workbook Actual Duration [WorkbookActualDuration]

 Workbook Remaining Duration [WorkbookRemainingDuration]

 Workbook Duration (total) [WorkbookDuration]

 Workbook # of Activities [WorkbookNumberofactivities]

Introduction

Metric Developer’s Guide 4

Dynamic Fields
Dynamic fields have different values depending on the context in which they are being used.
“Period Start” and “Period End” are both dynamic fields. When Period Start and Period Finish are
being applied to a phase analysis, Period Start and Period Finish relate to the start and finish of
the phase in question. When being used within the context of a ribbon, Period Start and Period
End relate to the start and end date of the ribbon.

 Period Start: [_PeriodStart]

 Period Finish: [_PeriodFinish]

In the context of Ribbons – the earliest start of the first activity in the Ribbon (time independent) is
Period Start. Similarly, the end of the last activity in the Ribbon is Period Finish.

In the context of the Phase, Period Start is the start of a Phase and Period End is the end of the
Phase.

Metric Formulas

Formula Syntax
Acumen Fuse metrics are defined using standard MS Excel syntax/scripting language. Formulas
can be built within Fuse either through the freeform formula editor or by selecting functions/fields
from the various menus within the metric editor. The Check Formula feature ensures correct
syntax during metric development.

Array Formulas
Acumen metric formulas are based on what is known as “Single Value Result Array formulas”.
Single Value Result Array formulas work with a series of data (activities), aggregate it (typically
using the likes of SUM, AVERAGE or COUNT) and return a single value to the (ribbon, phase or
intersection) analyzer.

Array formulas typically return a series of values. For example, in Excel, the formula
=Row(A1:A5) returns only a single value (the first value in the list). Instead, an array formula will
return all values for A1 to A5. Against the results of an array formula, you typically apply a
container function such as SUM or AVERAGE or COUNT. These functions enable you to apply
the function to the list of values and return a single value result.

Relating this back to Acumen, a ribbon, phase and intersection all contain one or more activities.
In the case of phases and intersections, the activities may span across more than one phase or
intersection and so certain data (duration, work and cost field types) gets pro-rated. When metric
functions are applied during an Acumen analysis, they are applied to the ribbon, phase or
intersection indirectly being applied to all activities within that segment through the use of an
array formula.

Introduction

Metric Developer’s Guide 5

Example of Ribbon and Phase Calculation of Metrics

Formula Types
There are three formulas in Acumen and they all use MS Excel Array formula syntax.

 Primary formula

 Secondary formula

 Tripwire formula

These are discussed in greater detail later in this guide.

Array Formula
Number of Lags
= 1+ 2 + 0 = 3

Metric Formula Development

Metric Developer’s Guide 6

Metric Formula Development

Acumen Metric Editor
This metric editor provides a means of simplifying the development of metrics by reducing the
amount of times a metric formula needs to be manually written.

Each metric contains three formulas (primary, secondary and tripwire). Each of these three
formulas can be built in Acumen and beyond using a three level hierarchy:

 Exclusions — A top level set of filters to exclude specific activities based on type, status
and time period

 Filters — Standard filters that further pinpoint specific activities

 Formula — Advanced custom formulas to further specify advanced criteria sets.

Metric Formula Development

Metric Developer’s Guide 7

Exclusions, filters, and formula are hierarchical.

Writing Formulas
Acumen metrics can be developed using either a basic or advanced approach (or a combination
of the two):

 Basic — A filter-based set of metrics that don’t require detailed formula definition.

 Advanced — Detailed formulas used to define a metric beyond a simple filter.

This developer guide focuses on the syntax required to develop advanced metric formulas in
Acumen Fuse.

The easiest way to start creating advanced formulas is to first modify an existing formula. The
syntax for all formulas, new or modified, follows a standard format of:
Function(fieldvalue)

Common functions include COUNT, IF, COUNTIF, SUM, etc. and can be used in combination.

If conditions are used, then the syntax is modified and follows the format of:

Function(fieldvalue,value1,value2)

The following topics start with single formulas and then progress to include multiple formulas in
combinations.

Single Function Formulas
In this example, a metric formula is developed that will show the total remaining cost of the
project for the activities whose remaining cost is greater than $1,000. Since Acumen Fuse

Exclusions

• Activity Status (for example, planned, in-progress, complete)
• Activity type (for example, normal, milestones, summary)
• Time period (for example, starts or finishes in current time period)

Filters

• Simple filters based on fields (for example, Actual Start Date »
 Baseline Start Date)

• Multiple filters can be added - treated as AND compounds.

Formulas

• User-defined formulas. Useful when needing OR statements,
 divisions, or other advanced functions.

Value1 – if condition is met
Value 2 – if condition is not met

Metric Formula Development

Metric Developer’s Guide 8

calculates the remaining cost for each activity in the project, a base formula for calculating
remaining cost will be used. Then the formula will be modified using a series of conditions. The
final formula will sum all of the activity remaining costs, if they are greater than $1,000, and
present a total.

Step 1 – Start with the Base Formula
Objective: Create a formula for calculating the total remaining cost of the project.

The formula for calculating total remaining cost is:

SUM(RemainingCost)

This formula has no conditions and returns the sum of the remaining costs for each activity.

Step 2 – Add Conditions
There are several ways to modify the initial formula with conditions. The first way is to modify the
formula to return a count or a sum based on a condition.

Objective: Give a sum of the Number of Normal Activities whose Remaining Cost > $1,000.

While the conditional formula in a MS Excel worksheet cell would be
COUNTIF(RemainingCost,”>1000”), the equivalent function for MS Excel array syntax is slightly
different. In array syntax, this formula is:

Function(fieldvalue,value1,value2)

So the base formula must be modified to include the criteria of only counting the activity when its
Remaining Cost is greater than $1,000.

The conditional syntax is written as:

RemainingCost>1000,1,0

Where the 1,0 are important because they tell the formula what to return as the result. The
formula will return a ‘1’ if the condition is met, and a ‘0’ if the condition is not met. In absence of
these return values, an IF statement will return a Boolean true/false.

Finally, the SUM function is added on the outside of the conditional function to create the entire
formula:

SUM(IF(RemainingCost>1000,1,0))

Additionally, if the Acumen metric returns a ‘count’ – that is, the formula is asking for a summation
or a number of something where it counts, then the formula can be written in shorthand. In a
counting or summing formula, the return of a ‘1’ if the condition is met and a ‘0’ is the condition is
not met, is implied through the default return of true/false.

Many of the standard Acumen metrics included in the tool are written in shorthand. It is important
to be able to recognize when a formula is written in shorthand. This cuts down on syntax. More
information about shorthand formulas can be found later in this guide.

Therefore,

If the formula is returning a count (and not actual values), then the formula can be written in
shorthand and the IF, 1 and the 0, along with the extra commas can be dropped in exchange for
a single function called COUNTIF.

The original formula:

SUM(IF(RemainingCost>1000,1,0))

The resulting shortcut formula is:

Metric Formula Development

Metric Developer’s Guide 9

COUNTIF(RemainingCost,">1000")

The syntax for “SUM(IF” is very different to that of “COUNTIF”).

Step 3 – Return Field Values Rather Than Counts
In addition to having counts returned as the result for a metric formula, actual field values can
also be returned and then either reported individually or summed. Values may include, for
example, the total costs of completed activities or expected durations of planned activities.

This is the final modification of the metric formula for a summing all of the activity remaining
costs, if they are greater than $1,000, and presenting a total.

Objective: Sum the Remaining Cost for all Normal Activities whose Remaining Cost > $1,000

Start with the original FULL formula.

SUM(IF(RemainingCost>1000,1,0))

To summarize the remaining costs vs. having a count, the formula becomes:

SUM(IF(RemainingCost>1000,RemainingCost,0))

This formula will return the ‘Remaining Cost’ of each activity where the condition is met – in this
case Remaining Cost > $1000. A ‘0’ will be returned if the condition is not met.

Since this is not a counting formula, there is no shorthand way to write the formula.

So the final formula for showing a sum of all of the remaining costs where those individual activity
remaining costs are greater than $1,000 is:

SUM(IF(RemainingCost>1000,RemainingCost,0))

Compound Formulas – AND Conditions
Frequently, more than one condition is needed in a metric formula to return the desired result.
When these multiple conditions must be met in order to return an answer, it is called a compound
formula. One type of compound formula is an AND formula –i.e. all of the conditions must be met
to return an answer.

Standard syntax for an AND statement:

SUM(IF(Return_from_Condition1*Return_from_Condition2>0,1,0))

This formula is stating that if the sum of the return from Condition1 and 2 is greater than 0 then
return a 1.

This could also be shorthanded as:

SUM(Return_from_Condition1*Return_from_Condition2,">0")

Count-based Compound AND Formulas
As an example, we want to know the number of normal activities whose remaining cost is greater
than $1,000.

Field Value

Metric Formula Development

Metric Developer’s Guide 10

Objective: Count the Number of Normal Activities whose Remaining Cost > $1,000

Start with the original full formula (no shorthand):

SUM(IF(RemainingCost>1000,1,0))

In this example, only Normal activities are wanted. The formula for normal activities would be:

SUM(IF(ActivityType=”Normal”,1,0))

The syntax for AND functions is created by placing a ‘*’ between the two conditions. Then BOTH
conditions must be met for the statement to be true and a count to be returned.

To write this into the formula, a second IF condition is created and ‘multiplied’ by the first
condition. The IF statements are placed inside brackets so that the number of activities meeting
both criteria are summed.

SUM(IF(RemainingCost>1000,1,0)*)

By inserting the additional condition inside the parentheses, the modified formula is:

SUM(IF(RemainingCost>1000,1,0)*IF(ActivityType=”Normal”,1,0))

This can also be written in shorthand as:

SUM((RemainingCost>1000)*(ActivityType="Normal"))

The following table shows the possible outcomes of this multiple condition formula.

Remaining Cost > 0 Activity Type = Normal Return

No No 0

No Yes 0

Yes No 0

Yes Yes 1

Only when BOTH conditions are met does the formula return a value of 1.

Value-based Compound AND Formulas
In the previous example we were counting results. In this example, the same criteria are applied
but instead of counting results we are going to sum up the values (remaining cost) of those
activities that pass the compound criteria test.

Objective: Remaining Cost Total for Normal Activities whose Remaining Cost > $1,000

The original count formula is used as the basis:

SUM(IF(RemainingCost>1000,1,0)*IF(ActivityType=”Normal”,1,0))

The field name is then substituted for the ‘1’ – changing the formula from a count-formula to one
that brings back the remaining cost. The resulting formula is:

Insert the new condition.

Metric Formula Development

Metric Developer’s Guide 11

SUM(IF(RemainingCost>1000,RemainingCost,0)*IF(ActivityType=”Normal”,
1,0))

This formula had can be written in shorthand as well – but, only for the count side of the formula.

The shorthand formula becomes:
SUM(IF(RemainingCost>1000,RemainingCost,0)*(ActivityType="Normal"))

Compound Formulas – OR Conditions
Another type of compound formula is an OR formula – one condition or another condition must be
met in order to return an answer. For example, in checking project logic, it is helpful to know how
many activities are there that have no Predecessors OR no Successors. By placing a + sign
between the two conditions, EITHER condition being met makes the statement true and a count
to be returned.

Standard syntax for an OR statement:

SUM(IF(Return_from_Condition1+Return_from_Condition2>0,1,0))

This formula is stating that if the sum of the return from Condition1 or 2 is greater than 0 then
return a 1.

This could also be shorthanded as:

COUNTIF(Return_from_Condition1+Return_from_Condition2,">0")

Count-based Compound OR Formulas
Objective: Sum the Number of Activities with No Predecessors OR No Successors

Create the base formula logic:

SUM(IF(Return_from_Condition1+Return_from_Condition2>0,1,0))

Where the returns will return either a 1 or a 0

Next, detail out the two conditions:

IF(NumberofPredecessors=0,1,0)

IF(NumberofSuccessors=0,1,0)

Add the two detailed conditions to the main function:

SUM(IF(IF(NumberofPredecessors=0,1,0)+IF(NumberofSuccessors=0,1,0)>0
,1,0))

The following table shows the possible outcomes of this multiple condition formula.

Number of Preds = 0 Number of Successors = 0 Return

No No 0

No Yes 1

Yes No 1

Yes Yes 1

Instead of a ‘1’ that would return a
count, the field value name is used.

Metric Formula Development

Metric Developer’s Guide 12

The shorthand form for an OR formula is slightly different.

SUM(IF((NumberofPredecessors=0)+(NumberofSuccessors=0)>0,1,0))

Compound Formulas – Using AND and OR Together
Finally, AND and OR conditions can be combined together to create powerful formulas to show
all types of results. Always start with the FULL formulas – do not begin with the shorthand
formulas as characters can easily be left out. Once the formula is written and successfully tested,
then create the shorthand formula.

For example:

Objective: Sum the Project Remaining Cost for Activities with No Predecessors OR No
Successors and whose individual Remaining Cost is >$1,000.

First create the OR formula to find the number of activities with No Predecessors or No
Successors formula:

IF((NumberofPredecessors=0)+(NumberofSuccessors=0)>0,1,0)

Then, create the formula for returning Remaining Cost:

IF(RemainingCost>1000,RemainingCost,0)

Finally, combine the two formulas using the SUM syntax and the ‘*’ character:

SUM(IF((NumberofPredecessors=0)+(NumberofSuccessors=0)>0,1,0)
* IF(RemainingCost>1000,RemainingCost,0))

Other Math Functions
There are several other Math Functions in addition to AND and OR functions. Two specific
functions that are frequently used are AVERAGE and MAX.

Objective: Average Remaining Duration for Normal Activities.

AVERAGE(IF(ActivityType=”Normal”,RemainingDuration,false))

This formula will first return the Remaining Duration for each of the Normal Activities. If the
Activity is not Normal then it will return a false. False is specifically used vs. a 0 because False is
ignored during an averaging function. Finally the returned remained durations will be averaged.

Objective: Maximum amount of lag on Remaining Durations of Incomplete Activities.

MAX(maxlag*IF(ActivityType<>”Complete”,1,0))

This formula will return the maximum lag for each activity that is not complete.

Write the Primary Metric Formula

Metric Developer’s Guide 13

Write the Primary Metric Formula
The primary formula is the formula used to calculate the primary result calculated in an Acumen
analysis. Primary formulas can return any type of numeric or text-based result. Primary formulas
are applied to groupings of activities (depending on the ribbon, phase or intersection context).

Primary formulas can return any type of numeric or text-based result. To create a Primary
formula:

 Step 1 Define exclusions — These are overarching filters that limit which activities get
included in the search by type/status/phase.

 Step 2 Define Filters — These are the next level of filters further filtering out specific
activities. Many metric definitions can be completed by just using exclusions and filters
(for example, Critical activities).

 Step 3 Optional formula — If additional advanced criteria definition is needed, then select
the Advanced mode and define the function using the advanced metric editor.

For both basic and advanced Primary formula definition, formatting of primary formula results is
achieved using the “Formula Format” drop down list.

Basic Formula Definition Advanced Formula Definition

Write the Secondary Metric Formula

Metric Developer’s Guide 14

Write the Secondary Metric Formula
Once the Primary Metric Formula is created and successfully tested, the Secondary Formula can
be written. The syntax for the Secondary Formula is similar to that of the syntax for the Primary
Formula. The difference is that the Secondary Metric Formula is usually stated as a ratio, a
percentage, or a portion of the total vs. the discrete number in the Primary Metric Formula.

A Secondary formula is additional information shown in a ribbon/phase or intersection analysis
window.

There are two ways to create a secondary formula:

1. Simple percentage relative to the primary formula: if the secondary formula is
representing a percentage of the primary formula, then there is no need to manually
create formulas to create this result. Instead, simply select the relevant exclusions and
filters (in order to define the population against which you are going to divide the primary
formula in order to calculate the percentage) and then set the mode to “Percentage of
Primary Formula”. A simple percentage secondary formula can be auto-calculated in this
mode irrespective of whether the primary formula has been defined in basic or advanced
mode.

2. Advanced Secondary Formula: if the required secondary formula is not a simple
percentage of the primary formula, then set the mode to “Advanced” and define the
exclusions, filters and advanced formula manually as described below.

Example of Simple Percentage of Primary Formula and Advanced Secondary Formula
Definition

The secondary formula is an optional attribute of a metric and if not defined, it will not display in
the analyzer windows. Secondary formulas are also applied to groupings of activities (depending
on the ribbon, phase or intersection context).

For example, what if we want to know what the cost overrun is on the project. Cost Overrun is
defined by Total Cost being greater than Budget Cost.

Advanced Percentage Examples
Objective: Percent of Non-Summary Activities that have a Cost Overrun as a portion of the total
Number of Non-Summary Activities.

The first step is to create the full Primary Metric Formula to count the number of non-summary
activities that have a Cost Overrun. This is the numerator for the Secondary Metric Formula.

Auto Percentage Mode Manually Defined Mode

Write the Secondary Metric Formula

Metric Developer’s Guide 15

SUM(IF(TotalCost>BudgetCost,1,0)*IF(ActivityType<>”Summary”,1,0))

The second step is to create formula for the denominator of the Secondary Metric Formula. If the
Secondary Formula will be expressed as a percentage, then usually the denominator is a total.

SUM(IF(ActivityType<>”Summary”,1,0))

The full Secondary Formula divides the two individual formulas:

SUM(IF(TotalCost>BudgetCost,1,0)*IF(ActivityType<>”Summary”,1,0))/
SUM(IF(ActivityType<>”summary”,1,0))

Or, in shorthand form:

SUM(IF(TotalCost>BudgetCost)*IF(ActivityType<>”summary”))/
COUNTIF(ActivityType<>”summary”)

In this instance, the SUM(IF) was changed to COUNTIF since there is only one criteria used.

Let’s look at another example using a schedule criterion.

Objective: Percent of Uncompleted Activities are Critical.

The first step is to again create the Primary Metric Formula to count the number of Uncompleted
Activities that are Critical. This is the numerator for the Secondary Metric Formula.

SUM(IF(Critical,1,0)*IF(ActivityStatus<>”Complete”,1,0)
*IF(ActivityType=”Normal”,1,0))

The second step is to create formula for the denominator of the Secondary Metric Formula.

COUNTIF(ActivityType=”Normal”,1,0)

Therefore – the complete Secondary Formula divides the two individual formulas:

SUM(IF(Critical,1,0)*IF(ActivityStatus<>”Complete”,1,0)*IF

(ActivityType=”Normal”,1,0))/COUNTIF(ActivityType=”Normal”,1,0)

Or, in shorthand form:

SUM(IF(Critical)*IF(ActivityStatus<>”Complete”)*IF(ActivityType=
”Normal”))/COUNTIF(ActivityType=”Normal”)

Ratio Example
Objective: Number of Milestones vs. Number of Normal Activities

The base formula is:

1:
Σ Milestones

Σ Normal Activities

The Σ Milestones Numerator is:

COUNTIF(ActivityType=”Milestone”)

The Σ Normal Activities Denominator is:

COUNTIF(ActivityType=”Normal”)

The complete formula is:

(“1:”&(COUNTIF(ActivityType=”Milestone”)/COUNTIF(ActivityType=

Write the Secondary Metric Formula

Metric Developer’s Guide 16

”Normal”)))

It is possible that this ratio could be ‘upside down’, so use the above formula and calculate the
ratio. If the ratio is OK, no changes are needed.

If the ratio is not OK, then modify the formula to:

((COUNTIF(ActivityType=”Milestone”)/COUNTIF(ActivityType=

”Normal”))”:1”)

Write the Tripwire Metric Formula

Metric Developer’s Guide 17

Write the Tripwire Metric Formula
The tripwire formula is (optionally) used to determine the individual exceptions that are listed in
the Activity Browser. Writing the Tripwire Metric Formula is simpler than writing the Primary or
Secondary Metric Formulas as the Tripwire Metric Formula is not an array formula, but a classic
MS Excel cell formula.

Tripwire formulas apply to individual activities and must return a Boolean (for each activity) in the
form of either a “True” or “False” value. Metrics that do not contain a Threshold formula cannot be
used to display activities in the Activity Browser and also cannot be used in the Comparison
Analyzer.

Tripwires are a very useful means of graphically depicting when a particular metric threshold is
reached. Acumen tripwires are flexible with regards to the number of thresholds per metric that
can be defined, the type of thresholds (absolute and gradient) and the formulas against which
they can be based (primary and secondary).

When creating or editing a any of the metric formulas, you can use the “Check Formula” button to
validate the syntax of the formula. Note that when using the check formula button the test
calculation is applied to all activities within the workbook.

Tripwire formulas can be created in one of two ways:

1. Auto Calculated by Primary Formula: if the Primary formula was created using the basic
mode, you can opt to automatically create the tripwire formula without defining any
exclusions, filters or formulas for the tripwire definition. Instead, Acumen Fuse will
automatically create a Tripwire formula based on the exclusions and filters defined in the
primary formula. This mode cannot be used if the primary formula was created in
advanced mode. In Auto Calculated by Primary Formula mode, the tripwire exclusions
and filters options are disabled as they are not needed in light of the fact these settings
are automatically inherited from the primary exclusions and filters.

2. Advanced: This mode enables you to manually create exclusions, filters and advanced
functions that together return the required set of activities.

Auto Calculated Mode Advanced Mode

Write the Tripwire Metric Formula

Metric Developer’s Guide 18

The following are several examples of advanced tripwire formulas using the Advanced Metric
mode.

Cost Example
Objective: Yes or No – Is the Non-Summary Activity over Budget?

The formula is:

IF(TotalCost>BudgetCost,1,0)*IF(ActivityType<>”Summary”,1,0)

Or, in shorthand form:

AND(TotalCost>BudgetCost,ActivityType<>”Summary”)

Schedule Example
Objective: Yes or No – Does the Activity with a Remaining Cost of >$1,000 have Predecessors
or Successors?

The formula is:

IF(RemainingCost>1000,1,0)*IF((NumberofPredecessors=0,1,0)+(Numberof
Successors=0,1,0))

Or, in shorthand form:

AND(RemainingCost>1000,(NumberofPredecessors=0,NumberofSuccessors=0))

Once the Tripwire Metric formula is written, the thresholds must be defined.

Weighting
The weighting feature is only used for score carding or the executive report. It uses the tripwire
formula for the scorecard. All metrics in the scorecard are, by default, equally weighted. They are
weighted on a sliding scale from -10 to +10. The weighting formula is:

(metric A ∗ weighting for A) ∗ (metric B ∗ weighting for B)
10

Define Thresholds

Metric Developer’s Guide 19

Define Thresholds
The threshold editor enables customizable thresholds to be defined and associated colors set.
Simply put, it is a means of classifying the activity results into buckets. The threshold can be
shown as discrete (i.e. traffic lights), gradient, or mixed (combination of discrete and gradient).

Thresholds cannot be set for a range of values but must be defined for the boundary that defines
a range.

They enable the grouping and aggregating of multiple activities together so that results for a
ribbon or phase or intersection can be calculated.

Each metric includes an optional set of tripwire thresholds. These thresholds are used to
graphically show when a defined threshold is exceeded. Tripwire thresholds can be based on
either the primary or secondary formula. If the secondary formula is enabled (by checking the
checkbox for the secondary metric), then the tripwire threshold is automatically associated with
the secondary metric. If this checkbox is not checked, the tripwire threshold is automatically
associated with the primary formula.

Define Tripwire Threshold Scales
Tripwire threshold scales can be defined as having any number of intervals. To help with the
creation of such scales, use the Tripwire Thresholds » Color Scales menu to automatically
create standard scales.

This option provides three types of standard scale:

 Lowest is Better — creates a scale where the lowest values are preferable

 Highest is Better — creates a scale where the highest values are preferable

 Ideal Value — creates a scale where the middle values are preferable

For each of the three scale types, varying numbers of intervals can be created. In addition to
using the standard scale types, additional intervals can be added through the Color Scales menu.

Normal and Gradient Scales
Threshold intervals can be defined as either normal or gradient. By default, scales are defined as
“normal”. All threshold intervals within a single metric are either normal or gradient-based (they
cannot be mixed within a metric). Normal scales behave in an absolute or binary manner – that is,
a metric result either triggers a threshold or it doesn’t. A Gradient Scale behaves differently, in
that a metric result, while falling within a given interval, can be represented as being close to an
interval boundary. This type of scale is useful when determining how close to a tripwire boundary
does a metric result get. When using gradient scales, instead of discrete colors for the intervals
being used, gradient scales of color are used (based on where the metric falls in the scale).

Define Thresholds

Metric Developer’s Guide 20

Tripwire Thresholds
Once the Tripwire Scales have been defined, the threshold limits must be set. Typically a different
color is setup for each different limit. Since Acumen defines ranges vs. limits – small ranges must
be created around a limit Identify the threshold or level for each color, then, identify a small limit
around that threshold to create the tripwire threshold.

For example, to detect how many activities are at zero and at 0.5, levels are defined around zero
and 0.5 as follows:

Once these ranges are defined, enter them into the table to create the tripwires. If color is
associated with each one of the levels, then the colors will appear on the Ribbon View after
analysis.

Include/Exclude Metrics from Analysis
By default, each metric is available in all three analyzers (ribbon, phase, intersection). Optionally,
metrics can be excluded from a particular analysis (for example, phase) if, for example, the
context is not valid. You can include/exclude metrics from each of the three analyzers by using
the three Applies To checkboxes.

0.0 0.5

>=0 >=0.0000001 >=0.49 >=0.50

Shortcuts and Rules

Metric Developer’s Guide 21

Shortcuts and Rules
For several of the Acumen metrics, the syntax for the metric formula can be written in shorthand.
The formula works exactly the same way, just in fewer characters. The following are examples of
the most common shortcuts in metric formulas.

Count Shorthand with One Criterion
If there is only one criterion listed in the formula, the full formula must be written:

SUM(IF(ActivityType<>”Summary”,1,0))

This formula cannot be shorthanded using SUM(IF) with one criterion. To write it in shorthand
SUM(IF) must be changed to COUNTIF.

Therefore the shorthand formula is written as:

COUNTIF(ActivityType,"<>Summary")

Count Shorthand with Multiple Criteria
For a formula that has multiple critiera, the full formula is written as:

SUM(IF(RemainingCost>1000,1,0)*IF(ActivityType=”Normal”,1,0))

The red characters and the IF statement can be eliminated:

SUM(IF(RemainingCost>1000,1,0)*IF(ActivityType=”Normal”,1,0))

The shorthand formula is written as:

SUM((RemainingCost>1000)*(ActivityType="Normal"))

AND Shorthand with Multiple Criteria (Tripwire formulas)
If the formula uses multiple criteria, the full formula is written as:

IF(TotalCost>BudgetCost,1,0)*IF(ActivityType<>”Summary”,1,0)

The shorthand formula can be written as as series of conditions within an AND statement:

AND(TotalCost>BudgetCost, ActivityType<>”Summary”)

Definitions

Metric Developer’s Guide 22

Definitions

Term Definition

Tripwire Threshold The Tripwire Threshold is used to graphically show when a
defined threshold is exceeded.

Primary Metric Formula The primary formula is the formula used to calculate the primary
result calculated in an Acumen analysis.

Secondary Metric Formula The secondary formula is an optional attribute of a metric and is
usually used to show the metric as a percentage.

Tripwire Formula The tripwire formula is (optionally) used to determine the
individual exceptions that are listed in the Activity Browser.

Ribbons Ribbons are groupings of activities based on a given criteria
regardless of the time period.

Phases Phases are groupings of activities based on a given criteria
within a specific time period.

Intersections Intersections are user definable places where a ribbon and a
phase connect.

Commonly Used Syntax

Metric Developer’s Guide 23

Commonly Used Syntax

IF(logical_test, value_if_true, [value_if_false])
The IF function returns one value if the specified condition is TRUE and returns another value if
the specified condition is FALSE.

 Logical_test – Required - Any value or expression that can be evaluated to TRUE or
FALSE

 Value_if_true - Required -The value to be returned if the “logical_test” argument
evaluates to TRUE

 Value_if_false – Optional - The value to be returned if if the “logical_test” argument
evaluates to FALSE. If omitted then zero is returned

Example: IF(TaskStatus="Inprogress",1,0) returns 1 if the activity status is equal to
“InProgress” otherwise 0 is returned.

IF statements can be written in shorthand within Acumen. If the IF function name and
Value_if_true and Value_if_false parameters are omitted, the Acumen engine will assume that
the function is an IF statement returning either a 1 or a 0. For example,
IF(TaskStatus="Inprogress",1,0) can be written in shorthand as (TaskStatus="Inprogress")

SUM(number1, [number2], [number3], [number4], ...)
The SUM function adds all the numbers specified as arguments.

 number1 – Required - The first item that you want to add

 number2, number3, number4, ... –Optional - The remaining items that you want to add

Example: SUM(ActualCost) returns the sum of the Actual Cost.

AND(logical1, [logical2], ...)
Returns TRUE if all its arguments evaluate to TRUE; returns FALSE if one or more arguments
evaluate to FALSE. Most commonly used in the Tripwire formula.

 logical1 – Required - The first condition that you want to test that can evaluate to either
TRUE or FALSE.

 logical2, ... - Optional - Additional conditions that you want to test that can evaluate to
either TRUE or FALSE

Example: AND(ActivityType="Normal", ActivityStatus<>"Complete") returns TRUE if the activity
type is “NORMAL” and activity status is not equal to “COMPLETE”.

MAX(number1,number2,...)
Returns the largest value in a set of values.

 Number1, number2, ... - are 1 to 255 numbers for which you want to find the maximum
value.

Example: MAX(TotalFloat) returns the maximum Total Float.

Commonly Used Syntax

Metric Developer’s Guide 24

AVERAGE(number1, [number2],...)
Returns the average (arithmetic mean) of the arguments.

 number1 – Required - The first number for which you want the average.

 number2, .– Optional - Additional numbers for which you want the average, up to a
maximum of 255

Example: AVERAGE(TotalFloat) returns the average Total Float.

COUNTIF(range, criteria)
Counts the number of occurrences that meet a given criteria.

 Range - Required - One or more fields that contain numbers.

 Criteria - Required - A number, expression, or text string that defines which records to be
counted. For example, criteria can be expressed as 3, ">3","Normal", or "3".

Example: COUNTIF(TotalFloat,">5") counts the number of activities who have a Total Float value
greater than 5.

Deltek is the leading global provider of enterprise software and information solutions for professional
services firms, government contractors, and government agencies. For decades, we have delivered
actionable insight that empowers our customers to unlock their business potential. Over 14,000
organizations and 1.8 million users in approximately 80 countries around the world rely on Deltek to
research and identify opportunities, win new business, optimize resource, streamline operations, and deliver
more profitable projects. Deltek – Know more. Do more.®

deltek.com

http://www.deltek.com/

	Introduction
	What Is a Metric?
	To What Do Metrics Apply?
	Grouping by Ribbons
	Grouping by Phases
	Grouping by Intersections

	Types of Acumen Fields
	Activity Fields
	Project Fields
	Workbook Fields
	Dynamic Fields

	Metric Formulas
	Formula Syntax
	Array Formulas
	Example of Ribbon and Phase Calculation of Metrics
	Formula Types

	Metric Formula Development
	Acumen Metric Editor
	Writing Formulas
	Single Function Formulas
	Step 1 – Start with the Base Formula
	Step 2 – Add Conditions
	Step 3 – Return Field Values Rather Than Counts

	Compound Formulas – AND Conditions
	Count-based Compound AND Formulas
	Value-based Compound AND Formulas

	Compound Formulas – OR Conditions
	Count-based Compound OR Formulas

	Compound Formulas – Using AND and OR Together
	Other Math Functions

	Write the Primary Metric Formula
	Write the Secondary Metric Formula
	Example of Simple Percentage of Primary Formula and Advanced Secondary Formula Definition
	Advanced Percentage Examples
	Ratio Example

	Write the Tripwire Metric Formula
	Cost Example
	Schedule Example
	Weighting

	Define Thresholds
	Define Tripwire Threshold Scales
	Normal and Gradient Scales
	Tripwire Thresholds
	Include/Exclude Metrics from Analysis

	Shortcuts and Rules
	Count Shorthand with One Criterion
	Count Shorthand with Multiple Criteria
	AND Shorthand with Multiple Criteria (Tripwire formulas)

	Definitions
	Commonly Used Syntax
	IF(logical_test, value_if_true, [value_if_false])
	SUM(number1, [number2], [number3], [number4], ...)
	AND(logical1, [logical2], ...)
	MAX(number1,number2,...)
	AVERAGE(number1, [number2],...)
	COUNTIF(range, criteria)

